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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with high prevalence, which 

imposes a substantial public health problem. The heritability of AD is estimated at 60–80% 

forecasting the potential use of genetic biomarkers for risk stratification in the future. Several large 

scale genome-wide association studies using high frequency variants identified 10 loci 

accountable for only a fraction of the estimated heritability. To find the missing heritability, 

systematic assessment of various mutational mechanisms needs to be performed. This copy 

number variation (CNV) genome-wide association study with age at onset (AAO) of AD 

identified 5 CNV regions that may contribute to the heritability of AAO of AD. Two CNV events 

are intragenic causing a deletion in CPNE4. In addition, to further study the mutational load at the 

10 known susceptibility loci, CNVs overlapping with these loci were also catalogued. We 

identified rare small events overlapping CR1 and BIN1 in AD and normal controls with opposite 

CNV dosage. The CR1 events are consistent with previous reports. Larger scale studies with 

deeper genotyping specifically addressing CNV are needed to evaluate the significance of these 

findings.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder affecting 

approximately 5.4 million individuals in the US and is the most common cause of dementia 

in North America and Europe [1–3]. Genetic factors play an important role in the 

pathogenesis of AD and contribute to the variance of age at onset (AAO) [4, 5]. Rare 

Mendelian forms of AD have confirmed and elucidated pathways involved in amyloid 

accumulation, but only account for a small percentage of the cases of AD [6]. The 

heritability of late-onset AD (LOAD) is estimated at 60–80%. The population attributable 

risk for the APOE4 allele is calculated at 20–70% in various studies. The recent ADGC 

study calculated the attributable risk for the ten non-APOE4 loci at 35%; however, it was 

felt that it might be an overestimate due to the winner’s curse. Additional loci may 

contribute to the genetic architecture of AD and account for the missing heritability [7]. 

APOE4 has a strong effect on AAO of AD and an additional 4–5 loci may contribute to the 

heritability of AAO [8].

Structural variation of submicroscopic DNA segments (deletions, duplications, and 

inversions) has greatly expanded our understanding of human genetic variation [9]. Copy 

number variations (CNVs) influence gene expression, phenotypic variation, and adaptation 

by altering gene dosage and genome organization [10, 11]. CNVs are often multiallelic and 

have a higher de novo mutation rate, and therefore they are often not adequately tagged by 

single-nucleotide polymorphism (SNPs) [12]. Because of these attributes, CNVs confer a 

novel genetic marker map with different properties representing a supplementary approach 

to SNP association [13]. With the advent of microarray technology allowing genome-wide 

ascertainment of CNVs, disease associations have been reported in various diseases 

including neurological diseases [14].

This study of CNV association with AD AAO was designed to examine the role of low-

frequency variants with intermediate penetrance in the genetic architecture of AD. AAO 

serves as a quantitative endophenotype and the cases-only study design eliminates 

misclassification bias in this common disease with age-dependent penetrance. The 

mutational load architecture is likely to be locus specific, thus the detection of a given 

susceptibility locus will be successful by using the marker map that predominantly 

contributes to the mutational load of that locus, underlining the importance of the systematic 

assessment of all genetic variants. In addition, we catalogued the CNVs overlapping with the 

10 susceptibility loci discovered in the genome-wide association studies (GWAS) to 

evaluate the role of CNVs contributing to the mutational load of these loci.

Published CNV studies in AD [15–19] have focused mostly on large events (>100 kb) to 

achieve high confidence calls and performed the tests of association on these events. We 

previously reported an olfactory receptor cluster association with AAO of AD performing 

the regression analysis on binned numeric logR ratio data without performing segmentation 

[20]. An alternative strategy applied here is to use permissive segmentation only to reduce 

the dataset where events may occur, perform the test of association on the numeric 

segmented data, and validate the CNV calls if a replicated association signal was detected. 

This second approach can detect association signals from smaller events that would have 
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been discarded when performing the high confidence calls and overcomes the need to 

determine exact dosage, which could be problematic at common CNV loci as the reference 

will deviate from the diploid dosage.

METHODS

Subject cohorts

781 subjects were enrolled in the study. Probable AD diagnosis was established by 

NINCDS-ADRDA criteria [21]. The methodology of the Texas Alzheimer Research and 

Care Consortium project has been described in detail elsewhere [22]. Controls were 

recruited at each participating site by the same inclusion criteria, including age over 55 

years, male and female, unrelated to AD subjects, Clinical Dementia Rating (CDR) global 

score 0, normal performance on activities of daily living (ADL), and all information was 

obtained from a surrogate historian. After enrollment all control subjects underwent 

neuropsychological testing including assessment of Global cognitive functioning/status 

(Mini-Mental Status Examination and CDR), Attention (Digit Span and Trails A), Executive 

function (Trails B and Clock Drawing; Texas Card Sorting is optional), Memory (Wechsler 

Memory Scale (WMS) Logical Memory I and WMS Logical Memory II), Language (Boston 

Naming and FAS Verbal Fluency), Premorbid IQ (AMNART), Visuospatial Memory 

(WMS-Visual Reproduction I and II), Psychiatric symptoms (Geriatric Depression Scale; 

Neuropsychiatric Inventory-Questionnaire) and Functional assessment (Lawton-Brody 

ADL: PSMS, IADL). Control subjects showing impairment were excluded from the control 

cohort after consensus review.

Informed consent was obtained from all subjects prior to inclusion. Genomic DNA was 

isolated from whole blood by the Puregene DNA isolation kit (Qiagen) according to the 

manufacturer’s instructions.

AAO phenotyping

AAO was determined with two standardized methods in both cohorts: i) caregiver estimate 

by prompted standard question regarding onset of symptoms and ii) physician estimate of 

duration of illness using a standardized and validated structured interview with landmark 

event to facilitate recall [23].

APOE genotyping

Genotyping was performed according to manufacturer‘s instruction with real-time PCR 

using custom TaqMan probes (Applied Biosystems, Inc) unique for SNPs of rs7412 and 

rs429358 at nucleotides 112 and 158 of the APOE gene, respectively. All amplifications 

were carried out in an ABI 7900HT thermal cycler (Applied Biosystems, Inc). APOE 

genotype was determined from the combination of alleles present at the 112 and 158 

polymorphisms.

CNV genotyping by the genome-wide human SNP array 6.0

Array based genotyping was performed on the Genome-Wide Human SNP Array 6.0 

(Affymetrix) according to the manufacturer’s instructions. QC measures for the Genome-
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Wide Human SNP Array 6.0 (Affymetrix) array included contrast QC (>0.4) and Median of 

the Absolute values of all Pairwise Differences (MAPD) <0.4. Arrays with number of calls 

more than 2SD from the mean were excluded.

Detection of CNV and test of association

We performed principal component analysis using the Eigenstrat method [24] implemented 

in Golden-Helix. The Affymetrix intensity data was corrected for 16 principal components 

as this correction resulted in the QQ plot without evidence of inflation (Supplementary 

Figure 1; available online: http://www.j-alz.com/issues/33/

vol33-2.html#supplementarydata08). The PCA corrected data was segmented by the CNAM 

algorithm implemented in GoldenHelix (Golden-Helix). The univariate method identifies 

rare CNVs by scanning the data subject by subject. In the univariate method, we applied a 

moving window of 20,000 probes: the maximum number of segments per 10,000 markers 

was set at 1 and we set the minimum number of marker per segment at 1 with maximum 

pairwise permuted p-value was set at 0.005, applying 2,000 permutations per pair, to have 

high sensitivity to detect association signals from small events with the expectations that all 

association signal events will be manually reviewed for validation. The multivariate method 

compares all samples at each locus and identifies common CNVs. In the multivariate 

segmentation, we did not apply a moving window and used similar setting as in the 

univariate segmentation (maximum number of segments per 10,000 markers 10, minimum 

number of marker per segment 1, maximum pairwise permuted p-value was set at 0.005, 

applying 2,000 permutations per pair). Both algorithms generate segmentation covariates 

that results in reduction of the dataset to regions of interests where CNV events occur, thus 

limiting the number of tests of association.

For test of association, Cox proportional hazard analysis was performed using the covariates 

from the univariate and multivariate segmentation algorithms. The Cox proportional hazard 

regression script was created in R and the analysis of the corrected log R ratio data as 

predictor and AAO as outcome was performed in R. We used the FDR approach and the 

criteria for significance was set at corrected p-value of <0.05. For the covariates that were 

associated with AAO of AD, the analysis was repeated incorporating gender and APOE 

status (number of APOE alleles as categorical variable) in the proportional hazard model.

We analyzed the NIA-LOAD Familial Study dataset probands deposited in dbGAP (http://

www.ncbi.nlm.nih.gov/gap) for replication of the results. 866 AD subjects were included in 

the analysis from the LOAD dataset selected using the following criteria: probands only, 

Caucasian, non-Hispanic, and AAO data available. The NIA-LOAD Familial Study 

genotyping was performed on the Illumina Human610 Quadv1 B array. The logR ratio was 

calculated in the GenomeStudio (Illumina) software. Candidate locus specific data was 

extracted and Cox porportinal hazard regression was performed on the logR numeric data 

because the candidate regions were inadequately covered for segmentation.

RESULTS

756 samples passed the contrast QC and were adequate for copy number analysis. Forty 

samples failed MAPD cutoff of 0.4 and 143 samples failed due to number of CNV calls 
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more than 2SD of the mean. 573 samples passed QC: 381 AD subjects and 192 normal 

controls. Six AD subjects had missing AAO or APOE genotype, thus 375 AD subjects 

entered the cases-only AAO analysis. Demographics of the 375 subjects are depicted in 

Table 1.

The Cox proportional hazard model identified 14 univariate segments corresponding to 11 

chromosomal regions where the association signal survived multiple testing correction 

depicted in the Manhattan plot (Fig. 1). Five regions remained after manual review of the 

CNV events and the AAO versus segmented logR ratio scatterplots (Table 2). For all of 

these probes/regions, the p-value remained comparable after adding APOE and gender into 

the Cox proportional hazard model (Table 2). The number of events contributing to the 

association signal is depicted in Supplementary Table 1; consistent with the segmentation 

method these events were rare, ranging from 1 to 5 instances for the various regions. Three 

of the 5 regions are known CNV regions; the events on chromosome 3 : 131.9 Mb are 

intragenic causing a deletion in CPNE4 (Supplementary Figure 2). The detected CNVs were 

small, ranging from 3.6–24.8 kb. The events contributing to the AAO association signals are 

detailed in Supplementary Table 3. The multivariate segmented data detected nominal 

associations only (data not shown); the number of events contributing to these signals were 

consistent with the segmentation method developed to detect common CNVs. The LOAD 

familial dataset probands were studied for replication of these signals (Supplementary Table 

2). The coverage of the candidate regions was limited on the Illumina 610 array 

(Supplementary Table 1) precluding conclusive interpretation of the replication study.

In order to further assess mutational load, the CNV load of the previously identified 10 

susceptibility loci [7] was evaluated in the TARCC dataset. CNVs that are overlapping with 

genes nearest to the reported associated SNPs are summarized in Table 3. We detected four 

small events in CR1 at two loci (Supplementary Figure 3) and two events in BIN1. In 

CD2AP, a small intragenic event was detected in a control.

DISCUSSION

Five CNV regions were detected with sizes ranging from 3.6–24.8 kb and allele frequencies 

of 0.001–0.006 suggesting that small events with low frequencies could contribute to the 

genetic architecture of AD. The previously reported [20] chromosome 14 olfactory receptor 

cluster association with AAO of AD was confirmed (uncorrected p-value of 0.03) in this 

analysis workflow, and the size of the effect is consistent with the smaller sample size (the 

reported association included a sample size of 507 subjects in contrast with the 375 reported 

here).

Published case-control CNV GWAS in AD applied a fundamentally different workflow by 

entering only high stringency calls typically in excess of 100 kb in size to the analyses. The 

CPNE4 deletion has been documented in the database of Genomic Variants (http://

projects.tcag.ca/variation/) and was validated in this set (Supplementary Figure 2). CPNE4 

encodes copine IV, a calcium-dependent membrane-binding protein highly expressed in the 

brain. The detected CNV events have a high probability supported by the consistent within 

event logR ratio values and their presence in the database of Genomic Variants (3 out of 5 
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loci). The limited availability of probes in the regions of interest in the Illumina Human 610 

or 650 arrays confounds the replication of these results in the NIA LOAD study, ADNI 

study, and the Caribbean Hispanic study, thus their significance remains unknown. Further 

larger replication studies with adequate coverage of the regions and molecular validation are 

needed. This emphasizes further challenges in CNV association studies: i) unlike SNPs 

single probe associations are usually not considered and several consecutive probes are 

needed to identify an event and ii) due to low allele frequencies, even larger studies are 

needed to have the power to detect the association than for SNP GWAS. Next generation 

whole genome sequencing evolved as a tool to detect most genetic variation in a single 

experiment; however, the cost and the large sample size needed in AD preclude their utility 

at this point in time.

Several small events overlapping genes in the 10 known susceptibility loci were identified 

suggesting that CNVs may contribute to the genetic architecture of these loci in AD. The 

CNV involving the CR1 gene at the low copy repeat region (Supplementary Figure 3, pink 

and blue bars) is consistent with previous reports and the direction of the CNV dosage in 

cases and controls consistent with the previously reported association [16]. Further work is 

needed to delineate the effect of these CNVs in AD.

Challenges to identifying the loci contributing to the heritability of AD are many fold. The 

disease affects the elderly, is common, and has an age-dependent penetrance, all 

contributing to misclassification bias which decreases power. The cases-only design 

attempts to eliminate the misclassification bias. Identification of genes that regulate AAO in 

AD may result in valid therapeutic targets as projections suggest that by postponing AAO by 

only 5 years may decrease the prevalence of AD by half [2]. CNVs are thought to contribute 

to the genetics of various diseases by intermediate frequency alleles with intermediate 

penetrance, which is confirmed in this study. Due to the lower allele frequencies compared 

to SNPs, CNV association studies need even larger sample sizes. Additional work is needed 

to validate and confirm these associations.

There have been several genome-wide scans involving over 10,000 cases and 10,000 

controls which have identified replicable loci [7]. However, these loci together account for 

only a small fraction of the heritability of AD [7]. In order to find the missing heritability, 

systematic assessment of structural variants, rare variants, DNA methylation, and common 

variants need to be performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported by the Texas Alzheimer’s Research and Care Consortium (TARCC) funded by the state 
of Texas through the Texas Council on Alzheimer’s Disease and Related Disorders and an Alzheimer Association 
New Investigator Research Grant to KS.

Authors’ disclosures available online (http://www.j-alz.com/disclosures/view.php?id=1495).

Szigeti et al. Page 6

J Alzheimers Dis. Author manuscript; available in PMC 2014 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.j-alz.com/disclosures/view.php?id=1495


Investigators from the Texas Alzheimer’s Research and Care Consortium: Baylor College of Medicine: Susan 
Rountree MD, Valory Pavlik PhD, Wen Chan PhD, Paul Massman PhD, Eveleen Darby, Tracy Evans RN, Aisha 
Khaleeq; Texas Tech University Health Science Center: Benjamin Williams, MD, Gregory Schrimsher, PhD, 
Andrew Dentino, MD, Ronnie Orozco; University of North Texas Health Science Center: Thomas Fairchild, PhD, 
Janice Knebl, DO, Sid E. O’Bryant, PhD, James R. Hall, PhD, Robert C. Barber, PhD, Douglas Mains, Lisa 
Alvarez; University of Texas Southwestern Medical Center: Perrie Adams, PhD, Roger Rosenberg, MD, Myron 
Weiner, MD, Mary Quiceno, MD, Joan Reisch, PhD, Ryan Huebinger, PhD, Guanghua Xiao, PhD, Doris Svetlik, 
Amy Werry, Janet Smith; University of Texas Health Science Center – San Antonio: Donald Royall, MD, 
Raymond Palmer, PhD, Marsha Polk.

References

1. Ebly EM, Parhad IM, Hogan DB, Fung TS. Prevalence and types of dementia in the very old: 
Results from the Canadian Study of Health and Aging. Neurology. 1994; 44:1593–1600. [PubMed: 
7936280] 

2. Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, van Belle G, Jolley 
L, Larson EB. Dementia and Alzheimer disease incidence: A prospective cohort study. Arch 
Neurol. 2002; 59:1737–1746. [PubMed: 12433261] 

3. Rocca WA, Hofman A, Brayne C, Breteler MM, Clarke M, Copeland JR, Dartigues JF, Engedal K, 
Hagnell O, Heeren TJ, et al. Frequency and distribution of Alzheimer’s disease in Europe: A 
collaborative study of 1980–1990 prevalence findings. The EURODEM-Prevalence Research 
Group. Ann Neurol. 1991; 30:381–390. [PubMed: 1952826] 

4. Daw EW, Heath SC, Wijsman EM. Multipoint oligogenic analysis of age-at-onset data with 
applications to Alzheimer disease pedigrees. Am J Hum Genet. 1999; 64:839–851. [PubMed: 
10053019] 

5. Daw EW, Payami H, Nemens EJ, Nochlin D, Bird TD, Schellenberg GD, Wijsman EM. The 
number of trait loci in late-onset Alzheimer disease. Am J Hum Genet. 2000; 66:196–204. 
[PubMed: 10631151] 

6. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, 
Michon A, Martin C, Charbonnier F, Raux G, Camuzat A, Penet C, Mesnage V, Martinez M, 
Clerget-Darpoux F, Brice A, Frebourg T. Early-onset autosomal dominant Alzheimer disease: 
Prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999; 65:664–670. 
[PubMed: 10441572] 

7. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik 
GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, 
Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny 
P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green 
RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer 
A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, 
Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis 
WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, 
Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, 
Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish 
J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, 
Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, 
McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, 
Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman 
JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, 
Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin 
VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, 
Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman 
EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, 
Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. 
Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset 
Alzheimer’s disease. Nat Genet. 2011; 43:436–441. [PubMed: 21460841] 

8. Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, Watts RL, Hubble JP, Koller WC, 
Pahwa R, Stern MB, Hiner BC, Jankovic J, Allen FA Jr, Goetz CG, Mastaglia F, Stajich JM, 

Szigeti et al. Page 7

J Alzheimers Dis. Author manuscript; available in PMC 2014 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gibson RA, Middleton LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD, 
Schmechel DE, Welsh-Bohmer KA, Conneally PM, Roses AD, Gilbert JR, Vance JM, Haines JL, 
Pericak-Vance MA. Age at onset in two common neurodegenerative diseases is genetically 
controlled. Am J Hum Genet. 2002; 70:985–993. [PubMed: 11875758] 

9. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson 
AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos 
D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, 
Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Armengol 
L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, 
Hurles ME. Global variation in copy number in the human genome. Nature. 2006; 444:444–454. 
[PubMed: 17122850] 

10. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de 
Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, Deloukas P, Hurles ME, 
Dermitzakis ET. Relative impact of nucleotide and copy number variation on gene expression 
phenotypes. Science. 2007; 315:848–853. [PubMed: 17289997] 

11. Conrad DF, Hurles ME. The population genetics of structural variation. Nat Genet. 2007; 39:S30–
S36. [PubMed: 17597779] 

12. Conrad DF, Bird C, Blackburne B, Lindsay S, Mamanova L, Lee C, Turner DJ, Hurles ME. 
Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet. 
2010; 42:385–391. [PubMed: 20364136] 

13. McCarroll SA. Extending genome-wide association studies to copy-number variation. Hum Mol 
Genet. 2008; 17:R135–R142. [PubMed: 18852202] 

14. Boone PM, Wiszniewski W, Lupski JR. Genomic medicine and neurological disease. Hum Genet. 
2011; 130:103–121. [PubMed: 21594611] 

15. Heinzen EL, Need AC, Hayden KM, Chiba-Falek O, Roses AD, Strittmatter WJ, Burke JR, 
Hulette CM, Welsh-Bohmer KA, Goldstein DB. Genome-wide scan of copy number variation in 
late-onset Alzheimer’s disease. J Alzheimers Dis. 2010; 19:69–77. [PubMed: 20061627] 

16. Brouwers N, Cauwenberghe CV, Engelborghs S, Lambert JC, Bettens K, Bastard NL, Pasquier F, 
Montoya AG, Peeters K, Mattheijssens M, Vandenberghe R, Deyn PP, Cruts M, Amouyel P, 
Sleegers K, Broeckhoven CV. Alzheimer risk associated with a copy number variation in the 
complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry. 2012; 17:223–233. 
[PubMed: 21403675] 

17. Swaminathan S, Shen L, Kim S, Inlow M, West JD, Faber KM, Foroud T, Mayeux R, Saykin AJ. 
Analysis of copy number variation in Alzheimer’s disease: The NIA-LOAD/NCRAD Family 
Study. Curr Alzheimer Res. 2012 in press. 

18. Ghani M, Pinto D, Lee JH, Grinberg Y, Sato C, Moreno D, Scherer SW, Mayeux R, St George-
Hyslop P, Rogaeva E. Genome-wide survey of large rare copy number variants in Alzheimer’s 
disease among Caribbean hispanics. G3 (Bethesda). 2012; 2:71–78. [PubMed: 22384383] 

19. Swaminathan S, Kim S, Shen L, Risacher SL, Foroud T, Pankratz N, Potkin SG, Huentelman MJ, 
Craig DW, Weiner MW, Saykin AJ. The Alzheimer’s Disease Neuroimaging Initiative A. 
Genomic copy number analysis in Alzheimer’s disease and mild cognitive impairment: An ADNI 
study. Int J Alzheimers Dis. 2011; 2011:729478. [PubMed: 21660214] 

20. Shaw CA, Li Y, Wiszniewska J, Chasse S, Zaidi SN, Jin W, Dawson B, Wilhelmsen K, Lupski JR, 
Belmont JW, Doody RS, Szigeti K. Olfactory copy number association with age at onset of 
Alzheimer disease. Neurology. 2011; 76:1302–1309. [PubMed: 21482944] 

21. Blacker D, Albert MS, Bassett SS, Go RC, Harrell LE, Folstein MF. Reliability and validity of 
NINCDS-ADRDA criteria for Alzheimer’s disease. The National Institute of Mental Health 
Genetics Initiative. Arch Neurol. 1994; 51:1198–1204. [PubMed: 7986174] 

22. O’Bryant SE, Waring SC, Cullum CM, Hall J, Lacritz L, Massman PJ, Lupo PJ, Reisch JS, Doody 
R. Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: A Texas 
Alzheimer’s research consortium study. Arch Neurol. 2008; 65:1091–1095. [PubMed: 18695059] 

23. Doody RS, Dunn JK, Huang E, Azher S, Kataki M. A method for estimating duration of illness in 
Alzheimer’s disease. Dement Geriatr Cogn Disord. 2004; 17:1–4. [PubMed: 14560058] 

Szigeti et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2014 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components 
analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38:904–
909. [PubMed: 16862161] 

Szigeti et al. Page 9

J Alzheimers Dis. Author manuscript; available in PMC 2014 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The Manhattan plot depicts the −log10p for the Cox proportional hazard regression using the 

array data (univariate segmentation covariates) as predictors and the age at onset (AAO) as 

outcome (n = 375). The chromosomes are shaded alternately and each segmentation 

covariate is represented by a dot.
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